Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Res Sq ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38585969

RESUMEN

The pathophysiological mechanisms driving disease progression of frontotemporal lobar degeneration (FTLD) and corresponding biomarkers are not fully understood. We leveraged aptamer-based proteomics (> 4,000 proteins) to identify dysregulated communities of co-expressed cerebrospinal fluid proteins in 116 adults carrying autosomal dominant FTLD mutations (C9orf72, GRN, MAPT) compared to 39 noncarrier controls. Network analysis identified 31 protein co-expression modules. Proteomic signatures of genetic FTLD clinical severity included increased abundance of RNA splicing (particularly in C9orf72 and GRN) and extracellular matrix (particularly in MAPT) modules, as well as decreased abundance of synaptic/neuronal and autophagy modules. The generalizability of genetic FTLD proteomic signatures was tested and confirmed in independent cohorts of 1) sporadic progressive supranuclear palsy-Richardson syndrome and 2) frontotemporal dementia spectrum syndromes. Network-based proteomics hold promise for identifying replicable molecular pathways in adults living with FTLD. 'Hub' proteins driving co-expression of affected modules warrant further attention as candidate biomarkers and therapeutic targets.

2.
Res Sq ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260284

RESUMEN

The current demand for early intervention, prevention, and treatment of late onset Alzheimer's disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n = 5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years). Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status. These proteins were implicated in neuronal processes and overlapped with protein signatures of LOAD in brain and cerebrospinal fluid. We found 17 proteins which LOAD-association was strongly dependent on APOE-ε4 carrier status. Most of them showed consistent associations with LOAD in cerebrospinal fluid and a third had brain-specific gene expression. Remarkably, four proteins in this group (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated as a consequence of LOAD as determined in a bi-directional Mendelian randomization analysis, reflecting a potential response to the disease onset. Accordingly, the direct association of these proteins to LOAD was reversed upon APOE-ε4 genotype adjustment, a finding which we replicate in an external cohort (n = 719). Our findings provide an insight into the dysregulated pathways that may lead to the development and early detection of LOAD, including those both independent and dependent on APOE-ε4. Importantly, many of the LOAD-associated proteins we find in the circulation have been found to be expressed - and have a direct link with AD - in brain tissue. Thus, the proteins identified here, and their upstream modulating pathways, provide a new source of circulating biomarker and therapeutic target candidates for LOAD.

3.
Respir Res ; 25(1): 44, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238732

RESUMEN

BACKGROUND: A decline in forced expiratory volume (FEV1) is a hallmark of respiratory diseases that are an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. METHODS: Data from the population-based AGES-Reykjavik study were used. Serum proteomic measurements were done using 4782 DNA aptamers (SOMAmers). Data from 1479 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional two-sample Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). RESULTS: In observational analyses, 530 SOMAmers were associated with FEV1 after multiple testing adjustment (FDR < 0.05). The most significant were Retinoic Acid Receptor Responder 2 (RARRES2), R-Spondin 4 (RSPO4) and Alkaline Phosphatase, Placental Like 2 (ALPPL2). Of the 257 SOMAmers with genetic instruments available, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta (ERO1B) and Apolipoprotein M (APOM). THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. CONCLUSIONS: In summary, this large scale proteogenomic analyses of FEV1 reveals circulating protein markers of FEV1, as well as several proteins with potential causality to lung function.


Asunto(s)
Pulmón , Proteómica , Humanos , Femenino , Embarazo , Anciano , Volumen Espiratorio Forzado/genética , Placenta , Biomarcadores
4.
Ocul Immunol Inflamm ; 32(1): 40-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36637883

RESUMEN

PURPOSE: We investigated the aqueous humor proteome and associated plasma proteome in patients with infectious or noninfectious uveitis. METHODS: AH and plasma were obtained from 28 patients with infectious uveitis (IU), 29 patients with noninfectious uveitis (NIU) and 35 healthy controls undergoing cataract surgery. The proteins profile was analyzed by SomaScan technology. RESULTS: We found 1844 and 2484 proteins up-regulated and 124 and 161 proteins down-regulated in the AH from IU and NIU groups, respectively. In the plasma, three proteins were up-regulated in NIU patients, and one and five proteins were down-regulated in the IU and NIU patients, respectively. The results of pathway enrichment analysis for both IU and NIU groups were related mostly to inflammatory and regulatory processes. CONCLUSION: SomaScan was able to detect novel AH and plasma protein biomarkers in IU and NIU patients. Also, the unique proteins found in both AH and plasma suggest a protein signature that could distinguish between infectious and noninfectious uveitis.


Asunto(s)
Extracción de Catarata , Uveítis , Humanos , Proteoma , Uveítis/diagnóstico , Biomarcadores
5.
Eur J Heart Fail ; 26(1): 87-102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37936531

RESUMEN

AIM: To examine the ability of serum proteins in predicting future heart failure (HF) events, including HF with reduced or preserved ejection fraction (HFrEF or HFpEF), in relation to event time, and with or without considering established HF-associated clinical variables. METHODS AND RESULTS: In the prospective population-based Age, Gene/Environment Susceptibility Reykjavik Study (AGES-RS), 440 individuals developed HF after their first visit with a median follow-up of 5.45 years. Among them, 167 were diagnosed with HFrEF and 188 with HFpEF. A least absolute shrinkage and selection operator regression model with non-parametric bootstrap were used to select predictors from an analysis of 4782 serum proteins, and several pre-established clinical parameters linked to HF. A subset of 8-10 distinct or overlapping serum proteins predicted different future HF outcomes, and C-statistics were used to assess discrimination, revealing proteins combined with a C-index of 0.80 for all incident HF, 0.78 and 0.80 for incident HFpEF or HFrEF, respectively. In the AGES-RS, protein panels alone encompassed the risk contained in the clinical information and improved the performance characteristics of prediction models based on N-terminal pro-B-type natriuretic peptide and clinical risk factors. Finally, the protein predictors performed particularly well close to the time of an HF event, an outcome that was replicated in the Cardiovascular Health Study. CONCLUSION: A small number of circulating proteins accurately predicted future HF in the AGES-RS cohort of older adults, and they alone encompass the risk information found in a collection of clinical data. Incident HF events were predicted up to 8 years, with predictor performance significantly improving for events occurring less than 1 year ahead, a finding replicated in an external cohort study.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Anciano , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Estudios de Cohortes , Volumen Sistólico , Estudios Prospectivos , Proteómica , Proteínas Sanguíneas , Pronóstico
6.
Europace ; 25(11)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37967346

RESUMEN

AIMS: Atrial fibrillation (AF) is associated with high risk of comorbidities and mortality. Our aim was to examine causal and predictive relationships between 4137 serum proteins and incident AF in the prospective population-based Age, Gene/Environment Susceptibility-Reykjavik (AGES-Reykjavik) study. METHODS AND RESULTS: The study included 4765 participants, of whom 1172 developed AF. Cox proportional hazards regression models were fitted for 4137 baseline protein measurements adjusting for known risk factors. Protein associations were tested for replication in the Cardiovascular Health Study (CHS). Causal relationships were examined in a bidirectional, two-sample Mendelian randomization analysis. The time-dependent area under the receiver operating characteristic curve (AUC)-statistic was examined as protein levels and an AF-polygenic risk score (PRS) were added to clinical risk models. The proteomic signature of incident AF consisted of 76 proteins, of which 63 (83%) were novel and 29 (38%) were replicated in CHS. The signature included both N-terminal prohormone of brain natriuretic peptide (NT-proBNP)-dependent (e.g. CHST15, ATP1B1, and SVEP1) and independent components (e.g. ASPN, AKR1B, and LAMA1/LAMB1/LAMC1). Nine causal candidates were identified (TAGLN, WARS, CHST15, CHMP3, COL15A1, DUSP13, MANBA, QSOX2, and SRL). The reverse causal analysis suggested that most AF-associated proteins were affected by the genetic liability to AF. N-terminal prohormone of brain natriuretic peptide improved the prediction of incident AF events close to baseline with further improvements gained by the AF-PRS at all time points. CONCLUSION: The AF proteomic signature includes biologically relevant proteins, some of which may be causal. It mainly reflects an NT-proBNP-dependent consequence of the genetic liability to AF. N-terminal prohormone of brain natriuretic peptide is a promising marker for incident AF in the short term, but risk assessment incorporating a PRS may improve long-term risk assessment.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Péptido Natriurético Encefálico , Biomarcadores , Pronóstico , Estudios Prospectivos , Proteómica , Factores de Riesgo , Fragmentos de Péptidos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Complejos de Clasificación Endosomal Requeridos para el Transporte
7.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986771

RESUMEN

The current demand for early intervention, prevention, and treatment of late onset Alzheimer's disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n=5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years). Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status. These proteins were implicated in neuronal processes and overlapped with protein signatures of LOAD in brain and cerebrospinal fluid. We found 17 proteins which LOAD-association was strongly dependent on APOE-ε4 carrier status. Most of them showed consistent associations with LOAD in cerebrospinal fluid and a third had brain-specific gene expression. Remarkably, four proteins in this group (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated as a consequence of LOAD as determined in a bi-directional Mendelian randomization analysis, reflecting a potential response to the disease onset. Accordingly, the direct association of these proteins to LOAD was reversed upon APOE-ε4 genotype adjustment, a finding which we replicate in an external cohort (n=719). Our findings provide an insight into the dysregulated pathways that may lead to the development and early detection of LOAD, including those both independent and dependent on APOE-ε4. Importantly, many of the LOAD-associated proteins we find in the circulation have been found to be expressed - and have a direct link with AD - in brain tissue. Thus, the proteins identified here, and their upstream modulating pathways, provide a new source of circulating biomarker and therapeutic target candidates for LOAD.

8.
Bioanalysis ; 15(21): 1287-1303, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37855231

RESUMEN

Background: Alternatives to phlebotomy in clinical trials increase options for patients and clinicians by simplifying and increasing accessibility to clinical trials. The authors investigated the technical and logistical considerations of one technology compared with phlebotomy. Methodology: Paired samples were collected from 16 donors via a second-generation serum gel microsampling device and conventional phlebotomy. Microsamples were subject to alternative sample handling conditions and were evaluated for quality, clinical testing and proteome profiling. Results: Timely centrifugation of blood serum microsamples largely preserved analyte stability. Conclusion: Centrifugation timing of serum microsamples impacts the quality of specific clinical chemistry and protein biomarkers. Microsampling devices with remote centrifugation and refrigerated shipping can decrease patient burden, expand clinical trial populations and aid clinical decisions.


Asunto(s)
Recolección de Muestras de Sangre , Suero , Humanos , Ensayos Clínicos como Asunto , Flebotomía , Pruebas con Sangre Seca , Tecnología
9.
Liver Int ; 43(9): 1984-1994, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37443448

RESUMEN

BACKGROUND AND AIMS: A reduction in hepatic venous pressure gradient (HVPG) is the most accurate marker for assessing the severity of portal hypertension and the effectiveness of intervention treatments. This study aimed to evaluate the prognostic potential of blood-based proteomic biomarkers in predicting HVPG response amongst cirrhotic patients with portal hypertension due to Hepatitis C virus (HCV) and had achieved sustained virologic response (SVR). METHODS: The study comprised 59 patients from two cohorts. Patients underwent paired HVPG (pretreatment and after SVR), liver stiffness (LSM), and enhanced liver fibrosis scores (ELF) measurements, as well as proteomics-based profiling on serum samples using SomaScan® at baseline (BL) and after SVR (EOS). Machine learning with feature selection (Caret, Random Forest and RPART) methods were performed to determine the proteins capable of classifying HVPG responders. Model performance was evaluated using AUROC (pROC R package). RESULTS: Patients were stratified by a change in HVPG (EOS vs. BL) into responders (greater than 20% decline in HVPG from BL, or <10 mmHg at EOS with >10 mmHg at BL) and non-responders. LSM and ELF decreased markedly after SVR but did not correlate with HVPG response. SomaScan (SomaLogic, Inc., Boulder, CO) analysis revealed a substantial shift in the peripheral proteome composition, reflected by 82 significantly differentially abundant proteins. Twelve proteins accurately distinguished responders from non-responders, with an AUROC of .86, sensitivity of 83%, specificity of 83%, accuracy of 83%, PPV of 83%, and NPV of 83%. CONCLUSIONS: A combined non-invasive soluble protein signature was identified, capable of accurately predicting HVPG response in HCV liver cirrhosis patients after achieving SVR.


Asunto(s)
Hepatitis C , Hipertensión Portal , Humanos , Respuesta Virológica Sostenida , Proteómica , Cirrosis Hepática , Hipertensión Portal/tratamiento farmacológico , Hipertensión Portal/etiología , Hepacivirus , Presión Portal , Presión Venosa
10.
Sci Rep ; 13(1): 9254, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286633

RESUMEN

Privacy protection is a core principle of genomic but not proteomic research. We identified independent single nucleotide polymorphism (SNP) quantitative trait loci (pQTL) from COPDGene and Jackson Heart Study (JHS), calculated continuous protein level genotype probabilities, and then applied a naïve Bayesian approach to link SomaScan 1.3K proteomes to genomes for 2812 independent subjects from COPDGene, JHS, SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) and Multi-Ethnic Study of Atherosclerosis (MESA). We correctly linked 90-95% of proteomes to their correct genome and for 95-99% we identify the 1% most likely links. The linking accuracy in subjects with African ancestry was lower (~ 60%) unless training included diverse subjects. With larger profiling (SomaScan 5K) in the Atherosclerosis Risk Communities (ARIC) correct identification was > 99% even in mixed ancestry populations. We also linked proteomes-to-proteomes and used the proteome only to determine features such as sex, ancestry, and first-degree relatives. When serial proteomes are available, the linking algorithm can be used to identify and correct mislabeled samples. This work also demonstrates the importance of including diverse populations in omics research and that large proteomic datasets (> 1000 proteins) can be accurately linked to a specific genome through pQTL knowledge and should not be considered unidentifiable.


Asunto(s)
Aterosclerosis , Proteoma , Humanos , Proteoma/genética , Teorema de Bayes , Privacidad , Estudio de Asociación del Genoma Completo , Aterosclerosis/genética , Polimorfismo de Nucleótido Simple
11.
Nat Commun ; 13(1): 3401, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697682

RESUMEN

Age-related macular degeneration (AMD) is one of the most common causes of visual impairment in the elderly, with a complex and still poorly understood etiology. Whole-genome association studies have discovered 34 genomic regions associated with AMD. However, the genes and cognate proteins that mediate the risk, are largely unknown. In the current study, we integrate levels of 4782 human serum proteins with all genetic risk loci for AMD in a large population-based study of the elderly, revealing many proteins and pathways linked to the disease. Serum proteins are also found to reflect AMD severity independent of genetics and predict progression from early to advanced AMD after five years in this population. A two-sample Mendelian randomization study identifies several proteins that are causally related to the disease and are directionally consistent with the observational estimates. In this work, we present a robust and unique framework for elucidating the pathobiology of AMD.


Asunto(s)
Degeneración Macular , Proteogenómica , Anciano , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Análisis de la Aleatorización Mendeliana , Factores de Riesgo
12.
J Hepatol ; 76(1): 25-33, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600973

RESUMEN

BACKGROUND & AIMS: Identifying fibrosis in non-alcoholic fatty liver disease (NAFLD) is essential to predict liver-related outcomes and guide treatment decisions. A protein-based signature of fibrosis could serve as a valuable, non-invasive diagnostic tool. This study sought to identify circulating proteins associated with fibrosis in NAFLD. METHODS: We used aptamer-based proteomics to measure 4,783 proteins in 2 cohorts (Cohort A and B). Targeted, quantitative assays coupling aptamer-based protein pull down and mass spectrometry (SPMS) validated the profiling results in a bariatric and NAFLD cohort (Cohort C and D, respectively). Generalized linear modeling-logistic regression assessed the ability of candidate proteins to classify fibrosis. RESULTS: From the multiplex profiling, 16 proteins differed significantly by fibrosis in cohorts A (n = 62) and B (n = 98). Quantitative and robust SPMS assays were developed for 8 proteins and validated in Cohorts C (n = 71) and D (n = 84). The A disintegrin and metalloproteinase with thrombospondin motifs like 2 (ADAMTSL2) protein accurately distinguished non-alcoholic fatty liver (NAFL)/non-alcoholic steatohepatitis (NASH) with fibrosis stage 0-1 (F0-1) from at-risk NASH with fibrosis stage 2-4, with AUROCs of 0.83 and 0.86 in Cohorts C and D, respectively, and from NASH with significant fibrosis (F2-3), with AUROCs of 0.80 and 0.83 in Cohorts C and D, respectively. An 8-protein panel distinguished NAFL/NASH F0-1 from at-risk NASH (AUROCs 0.90 and 0.87 in Cohort C and D, respectively) and NASH F2-3 (AUROCs 0.89 and 0.83 in Cohorts C and D, respectively). The 8-protein panel and ADAMTSL2 protein had superior performance to the NAFLD fibrosis score and fibrosis-4 score. CONCLUSION: The ADAMTSL2 protein and an 8-protein soluble biomarker panel are highly associated with at-risk NASH and significant fibrosis; they exhibited superior diagnostic performance compared to standard of care fibrosis scores. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of liver disease worldwide. Diagnosing NAFLD and identifying fibrosis (scarring of the liver) currently requires a liver biopsy. Our study identified novel proteins found in the blood which may identify fibrosis without the need for a liver biopsy.


Asunto(s)
Proteínas ADAMTS/análisis , Cirrosis Hepática/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Adulto , Área Bajo la Curva , Biomarcadores/análisis , Biopsia/métodos , Biopsia/estadística & datos numéricos , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/patología , Modelos Logísticos , Masculino , Massachusetts , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patología , Estudios Prospectivos , Curva ROC
13.
Cell Chem Biol ; 28(9): 1271-1282.e12, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-33894161

RESUMEN

Acute kidney injury (AKI) is a life-threatening disease with no known curative or preventive therapies. Data from multiple animal models and human studies have linked dysregulation of bone morphogenetic protein (BMP) signaling to AKI. Small molecules that potentiate endogenous BMP signaling should have a beneficial effect in AKI. We performed a high-throughput phenotypic screen and identified a series of FK506 analogs that act as potent BMP potentiators by sequestering FKBP12 from BMP type I receptors. We further showed that calcineurin inhibition was not required for this activity. We identified a calcineurin-sparing FK506 analog oxtFK through late-stage functionalization and structure-guided design. OxtFK demonstrated an improved safety profile in vivo relative to FK506. OxtFK stimulated BMP signaling in vitro and in vivo and protected the kidneys in an AKI mouse model, making it a promising candidate for future development as a first-in-class therapeutic for diseases with dysregulated BMP signaling.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Proteínas Morfogenéticas Óseas/metabolismo , Tacrolimus/farmacología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Fenotipo , Tacrolimus/análogos & derivados , Tacrolimus/química
14.
Cell Mol Gastroenterol Hepatol ; 11(1): 199-220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32866618

RESUMEN

BACKGROUND & AIMS: Liver fibrosis is a multifactorial trait that develops in response to chronic liver injury. Our aim was to characterize the genetic architecture of carbon tetrachloride (CCl4)-induced liver fibrosis using the Hybrid Mouse Diversity Panel, a panel of more than 100 genetically distinct mouse strains optimized for genome-wide association studies and systems genetics. METHODS: Chronic liver injury was induced by CCl4 injections twice weekly for 6 weeks. Four hundred thirty-seven mice received CCl4 and 256 received vehicle, after which animals were euthanized for liver histology and gene expression. Using automated digital image analysis, we quantified fibrosis as the collagen proportionate area of the whole section, excluding normal collagen. RESULTS: We discovered broad variation in fibrosis among the Hybrid Mouse Diversity Panel strains, demonstrating a significant genetic influence. Genome-wide association analyses revealed significant and suggestive loci underlying susceptibility to fibrosis, some of which overlapped with loci identified in mouse crosses and human population studies. Liver global gene expression was assessed by RNA sequencing across the strains, and candidate genes were identified using differential expression and expression quantitative trait locus analyses. Gene set enrichment analyses identified the underlying pathways, of which stellate cell involvement was prominent, and coexpression network modeling identified modules associated with fibrosis. CONCLUSIONS: Our results provide a rich resource for the design of experiments to understand mechanisms underlying fibrosis and for rational strain selection when testing antifibrotic drugs.


Asunto(s)
Tetracloruro de Carbono/toxicidad , Redes Reguladoras de Genes/efectos de los fármacos , Predisposición Genética a la Enfermedad , Cirrosis Hepática/inducido químicamente , Hígado/patología , Animales , Tetracloruro de Carbono/administración & dosificación , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Inyecciones Intraperitoneales , Hígado/efectos de los fármacos , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones , Sitios de Carácter Cuantitativo
15.
PLoS One ; 15(8): e0235551, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32833964

RESUMEN

VPS34 is a key regulator of endomembrane dynamics and cargo trafficking, and is essential in cultured cell lines and in mice. To better characterize the role of VPS34 in cell growth, we performed unbiased cell line profiling studies with the selective VPS34 inhibitor PIK-III and identified RKO as a VPS34-dependent cellular model. Pooled CRISPR screen in the presence of PIK-III revealed endolysosomal genes as genetic suppressors. Dissecting VPS34-dependent alterations with transcriptional profiling, we found the induction of hypoxia response and cholesterol biosynthesis as key signatures. Mechanistically, acute VPS34 inhibition enhanced lysosomal degradation of transferrin and low-density lipoprotein receptors leading to impaired iron and cholesterol uptake. Excess soluble iron, but not cholesterol, was sufficient to partially rescue the effects of VPS34 inhibition on mitochondrial respiration and cell growth, indicating that iron limitation is the primary driver of VPS34-dependency in RKO cells. Loss of RAB7A, an endolysosomal marker and top suppressor in our genetic screen, blocked transferrin receptor degradation, restored iron homeostasis and reversed the growth defect as well as metabolic alterations due to VPS34 inhibition. Altogether, our findings suggest that impaired iron mobilization via the VPS34-RAB7A axis drive VPS34-dependence in certain cancer cells.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Hierro/metabolismo , Neoplasias/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Colesterol/biosíntesis , Colesterol/genética , Fosfatidilinositol 3-Quinasas Clase III/genética , Endosomas/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Receptores de LDL/metabolismo , Transferrina/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
16.
Bioanalysis ; 12(13): 919-935, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32686955

RESUMEN

Aim: Evaluation of a novel microsampling device for its use in clinical sample collection and biomarker analysis. Methodology: Matching samples were collected from 16 healthy donors (ten females, six males; age 42 ± 20) via K2EDTA touch activated phlebotomy (TAP) device and phlebotomy. The protein profile differences between sampling groups was evaluated using aptamer-based proteomic assay SomaScan and selected ELISA. Conclusion: Somascan signal concordance between phlebotomy- and TAP-generated samples was studied and comparability of protein abundances between these blood sample collection methods was demonstrated. Statistically significant correlation in selected ELISA assays also confirmed the TAP device applicability to the quantitative analysis of protein biomarkers in clinical trials.


Asunto(s)
Proteínas Sanguíneas/análisis , Flebotomía/instrumentación , Adulto , Biomarcadores/sangre , COVID-19 , Ensayos Clínicos como Asunto , Infecciones por Coronavirus/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Hemólisis , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/sangre , Proteómica/instrumentación , Adulto Joven
17.
PLoS Comput Biol ; 15(12): e1007403, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31860671

RESUMEN

Computational approaches have shown promise in contextualizing genes of interest with known molecular interactions. In this work, we evaluate seventeen previously published algorithms based on characteristics of their output and their performance in three tasks: cross validation, prediction of drug targets, and behavior with random input. Our work highlights strengths and weaknesses of each algorithm and results in a recommendation of algorithms best suited for performing different tasks.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Modelos Genéticos , Benchmarking , Biología Computacional , Bases de Datos Genéticas/estadística & datos numéricos , Bases de Datos de Proteínas/estadística & datos numéricos , Humanos , Mapas de Interacción de Proteínas/genética
18.
Nat Chem Biol ; 15(2): 179-188, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643281

RESUMEN

The identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling. Generation and sequencing of a compound-resistant cell line identified a V430E mutation in ZIP7 that confers transferable resistance to the compound NVS-ZP7-4. NVS-ZP7-4 altered zinc in the ER, and an analog of the compound photoaffinity labeled ZIP7 in cells, suggesting a direct interaction between the compound and ZIP7. NVS-ZP7-4 is the first reported chemical tool to probe the impact of modulating ER zinc levels and investigate ZIP7 as a novel druggable node in the Notch pathway.


Asunto(s)
Proteínas de Transporte de Catión/genética , Estrés del Retículo Endoplásmico/fisiología , Receptor Notch1/genética , Animales , Apoptosis , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/fisiología , Línea Celular , Transformación Celular Neoplásica , Retículo Endoplásmico/fisiología , Humanos , Mutación , Transporte de Proteínas , Receptor Notch1/fisiología , Transducción de Señal , Zinc/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(44): E10362-E10369, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30297426

RESUMEN

Wnt/ß-catenin signaling plays pivotal roles in cell proliferation and tissue homeostasis by maintaining somatic stem cell functions. The mammalian target of rapamycin (mTOR) signaling functions as an integrative rheostat that orchestrates various cellular and metabolic activities that shape tissue homeostasis. Whether these two fundamental signaling pathways couple to exert physiological functions still remains mysterious. Using a genome-wide CRISPR-Cas9 screening, we discover that mTOR complex 1 (mTORC1) signaling suppresses canonical Wnt/ß-catenin signaling. Deficiency in tuberous sclerosis complex 1/2 (TSC1/2), core negative regulators of mTORC1 activity, represses Wnt/ß-catenin target gene expression, which can be rescued by RAD001. Mechanistically, mTORC1 signaling regulates the cell surface level of Wnt receptor Frizzled (FZD) in a Dishevelled (DVL)-dependent manner by influencing the association of DVL and clathrin AP-2 adaptor. Sustained mTORC1 activation impairs Wnt/ß-catenin signaling and causes loss of stemness in intestinal organoids ex vivo and primitive intestinal progenitors in vivo. Wnt/ß-catenin-dependent liver metabolic zonation gene expression program is also down-regulated by mTORC1 activation. Our study provides a paradigm that mTORC1 signaling cell autonomously regulates Wnt/ß-catenin pathway to influence stem cell maintenance.


Asunto(s)
Receptores Frizzled/metabolismo , Receptores Wnt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Línea Celular , Proteínas Dishevelled/metabolismo , Regulación hacia Abajo/fisiología , Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones
20.
PLoS One ; 10(6): e0127498, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26098886

RESUMEN

Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP) of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Sesquiterpenos de Guayano/farmacología , Canales Catiónicos TRPC/agonistas , Animales , Antineoplásicos/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Línea Celular Tumoral , Células HEK293 , Humanos , Indoles/farmacología , Neoplasias Renales/tratamiento farmacológico , Ratones , Ratones Desnudos , Piperidinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...